
Duality and the phases of Z(N) spin systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1980 J. Phys. A: Math. Gen. 13 L153

(http://iopscience.iop.org/0305-4470/13/5/008)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 05:13

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/13/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 13 (1980) L153-Ll60. Printed in Great Britain 

LETTER TO THE EDITOR 

Duality and the phases of Z ( N )  spin systems 
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i. Depto. de Fisica, Universidade Federal de S i0  Carlos, Caixa Postal 676, 13560-Slo 
Carlos, SP, B r a d  
t Instituto de Fisica e Quirnica de SHo Carlos, Universidade de SHo Paulo, Caixa Postal 369, 
13560-Sgo Carlos, SP, Brasil 

Received 4 January 1980 

Abstract. Using a generalised duality transformation and symmetry considerations, we 
obtain the phase diagram for Z ( N )  spin models. Using known properties of the Villain 
model, we conclude that for N 4 there are at least three phases, one of them being soft. For 
N a prime number, N > 3, we have only three types of phases, two being Characterised by 
symmetry arguments, whereas the third one is soft and has all powers of the order and 
disorder parameters vanishing. For N not a prime number, N >4,  we have, in addition to 
this soft phase, phases characterised by non-vanishing powers of the order or disorder 
parameter, with Z ( N ’ )  symmetries being broken. where A’‘ is a divisor of N. 

Recently two-dimensional Z ( N )  spin models have been intensely studied (Fradkin and 
Susskind 1978, Kogut 1979, Domany and Riedell979, Elitzur eta1 1979, Koberle and 
Swieca 1979, Balian et ul 1975, Bellisard 1978, Korthals Altes 1978), firstly because 
they are interesting non-trivial systems in their own right and secondly because they are 
related to Z ( N )  gauge systems (Fradkin and Susskind 1978, Elitzur et a1 1979, Kogut 
1979, Horn et a1 1979, Creutz et a1 1979), which are the poor man’s version of quantum 
chromodynamics. In this Letter we want to describe the main features of the phase 
diagrams of these models. 

Since Kramers and Wannier (1941), duality has proved to be a powerful tool for 
examining the behaviour of systems undergoing phase transitions. In this Letter we will 
characterise the phases of Z ( N )  models, applying a slightly more general concept of 
duality together with the following plausible assumption: criticality is continuous in the 
models’ parameters. Together with a rigorous result due to Frohlich and Lieb (1979), 
this may be used to show that for every discrete global symmetry of our model there 
exists a region in parameter space where it is spontaneously broken. Symmetry 
considerations will play an important role in gathering additional information (Wegner 
1972). We will restrict our attention to nearest-neighbour Z ( N )  models, the most 
general interaction being given by t 

t Interactions of the form ~in[i2.lr/N)An,~] are not considered because they are not of ferromagnetic character 
and lead to models with very different properties. 
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where ( i ^ ,  ;) indicates a sum over nearest-neighbour sites, 
than or equal to N/2 and at each site we have variables n(;) or S(;)  related by 

is the largest integer smaller 

S(r) = exp[(2~i/N)n(;)], n(;)=O, 1 , 2 , .  . . , N - 1 ,  (2) 

i.e. S(; )  equals the N roots of unity: S N ( r )  = 1. 

interaction (1) in terms of unitary operators S ( i )  acting on the state space as 
Following Yoneya (1978), we obtain the transfer matrix T corresponding to the 

S( i ) ln( i ) )  = exp[(2~i/N)n(i)]jn(i)) ,  (3) 

R(i) ln( i ) )= In(i)+l)(mod N) ,  (4) 

operators R( i )  which rotate the spin on site i by an angle 27r/N, 

and a set of functions fa({Kp}), a, p = 0, 1, . . . , N, satisfying 

where K, = -PJ,. For nearest-neighbour interactions T is actually a function of the 
product S ( i ) S + ( i  + l ) ,  of R ( i )  and the coupling constants K,, that is 

T = d S ( i ) S + ( i  -+ I), RG), We}, f,({KpHl. 

a(i) = S( i )§+( i  + I ) ,  

(6) 

We now define dual variables (Kadanoff and Ceva 1971) as follows: 

i7a) 

p ( i )  = R+(j)R+(i) .  
j < i  

The non-local disorder variable p ( i )  satisfies 

p + ( i ) p ( i  + 1) = R+(i +I). 

With the help of the variables (7) our transfer matrix may be expressed as 

T = c.[p( i )p( i  + 11, 4 1 ,  2fa({Kp1), W,/211, (9) 

where the function T is the same function as in equation (6) and c is some constant. Thus 
our system is self-dual in the following sense: 

(10) 

where Z({K,}, { f p } )  is the partition function and c '  an irrelevant constant. 
Before presenting our results, let us recall a rigorous one due to Frohlich and Lieb 

(1979) from which it follows that any one of our Z(N) models possesses at least one 

Zi{K,I, { f d )  = C ' Z ( W a 1 ,  {W2}) ,  
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critical point at a p high enough so that spontaneous magnetisation sets in, i.e. for a 
given set of coupling constants J, there exists a value p = pc where the partition 
function is non-analytic. As the coupling constants vary this point traces out the critical 
surface C. 

Since the duality transformation {K,} + {&} = {2f,} interchanges order and dis- 
order variables, it is immediately clear that a point {K,} satisfying the following 
equations, 

fO (KI, - . . , K N )  = K / 2 ,  a = l , 2 , . . . 7 R ,  (1 1) 

is a critical point if there is only one phase transition, and thus belongs to C. If there is 
more than one transition the transformation {K,} + {2fa} maps one branch of C onto 
another one and we will have to resort to symmetry or other considerations in order to 
pin down the general shape of C. Notice that the duality transformation {K,} + { 2 f O }  is 
different from the one introduced by Kramers and Wannier (1941), since it connects 
different models?. Only when {K,} and {2 fa}  describe the same model, as is the case for 
the scalar Potts (1952) or Villain (1975) models, do the two concepts coincide. 

Our duality transformation K, -+ 2f, may be more conveniently expressed in terms 
of the following variables: 

Diagonalising the cyclic matrix R (Wu and Lin 1976), we may immediately solve 
equation (6) for the functions f,, obtaining the following expression for the dual 
variables 2, t: 

This transformation is actually linear, in the plane 
N-1 

,=O 
x,=JN 

which is invariant under the duality transformation 1, = D(x,) .  It furthermore admits a 
set of fixed points lying on a straight line, which may conveniently be obtained as 
follows. 

Recently a rather special type of self-dual (in Kramers and Wannier's sense) model 
has been introduced by Villain (1975): 

where 

i In statistical mechanics one usually identifies a particular model as one having fixed values of Km, whereas 
we find it more natural to think in terms of one model only for fixed N, possessing variable coupling constants 
Kcl. 
$This  duality transformation has recently been used by Domany and Riedel (1979) to study the phase 
diagram of anisotropic N-vector models. 
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This model is not of the usual variety since its coupling constants xu depend on the 
temperature: 

+a 27r2 x ' , (T)=  1 exp - T ( a - N m ) 2  
m=--00 ( N T  

The transformed'coupling constants 2', ( T )  are given by 

2',(47r2/N2T) = x', ( T )  (18) 

and the fixed point is located at (Zamolodchikov 1978) 

f', = x',(27r/N). (19) 

The self-duality conditions derived from equation (13) yield a series of planes, 
whose intersection has to contain the self-dual Villain and Potts points. Therefore the 
solution is a straight line passing through these points, 

P P P x -x# -- _ .  . .=- x - x 1  x - x 2  -- 
- v  * 

- 
x-x;  x - n ;  x -xN 

The Villain model will also be useful in establishing the number of phases of our 
2 ( N )  model. For, if one believes JosC et al's (1977) estimate of the Kosterlitz-Thouless 
(1973) transition temperature in the XY model, it follows (Elitzur et a1 1979) that the 
Villain model has at least three phases for N > 4. 

Instead of spelling out all of our results, we restrict ourselves to describing the state 
of affairs for some particular N's.  

(1) One of the more interesting results is the existence of at least three phases for 
N 2 4. In the region x1 > x2 > . . > x~ it is not possible to characterise more than two 
phases by symmetry considerations only. Yet we know that the Villain model's 
thermodynamic path passes through this region and this model has more than two 
phases for N > 4. Thus there exists an extra phase containing the self-dual line equation 
(1 l ) ,  which implies that in this phase the duality transformation transforms order into 
disorder. As we cross from the low-temperature phase into this extra phase, the order 
parameter goes to zero and consequently in this phase ( S ) = ( p ) = O .  This in turn 
requires this extra phase to be soft, with power law decaying correlations (Elitzur et a1 
1979). Since the Potts transition for N > 4 is unique (Hintermann et a1 1978) and of 
first order (Baxter 1973), the Potts point cannot touch this phase and the bifurcation of 
the self-dual line equation (11) has to occur at some other point E on this line between 
the Potts and the Villain point. At  the point E the latent heat should just have vanished. 
A mean field calculation of the type used by Balian et a1 (1974) shows just these 
features, as can be seen from figure 1. For N a prime number, all powers of order and 
disorder variables vanish, i.e. 

( S " )  = ( p " )  = 0, n = 1 , 2  , . . . ,  N, 

and from symmetry considerations the same is expected for any N. This soft phase is 
bordered by two phases with (S)#O, ( p ) = O  and (S)=O, ( p ) # O  respectively and 
exponentially decaying correlations. Since the soft phase is not related to the spon- 
taneous breaking of a discrete symmetry, it survives the N + 00 limit and shows up in the 
XY model. 
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Figure 1. Free energy per particle (f) versus effective field (H) for N = 5 with .TI= 1 and 
J2 = 0.45. The curves (a) to (g) correspond to p equal to 0~450,0~495,0~505,0~510,0~513,  
0.5 14 and 0.515 respectively. For each p the maximum gives the free energy of the model 
in the mean field approximation. One transition occurs at P I -  0.500 and the second one at 
pz-O.5 14. 

Figure 2. Schematic diagram of the Z(4) model. The straight line AM is self-dual. The 
curves a, b and c represent the thermodynamic paths of the scalar Potts (J, = Jz ) ,  vector 
Potts (J2 = 0) and Villain model respectively. P is the critical point of the four-state Potts 
model and XI, I2 are critical king points. In phase 1: ( S )  # 0, ( p )  = 0, m # 0; in phase 2: Z(4) 
inv., ( S )  = 0, ( p )  # 0, m # 0; in phase 3: Z (2 )  inv., ( S )  = ( p )  = 0, (S’) # 0, ( p ’ )  # 0, m = 0. 

(2) For N = 4 the phase diagram is already known from Wu and Lin (1974), since it 
is a special case of the €our-state Ashkin-Teller (1943) model. It is shown in figure 2 
together with the thermodynamic path of the Villain and KZ = K3 = 0 model. Duality 
requires phase 3 to be soft and it is characterised by 

( S )  = ( p )  = 0 ,  but (S2) f 0, ( p 2 )  f 0. 
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Figure 3. Schematic diagram of the Z ( 5 )  model. The straight line AM is self-dual. The 
curves a, b and c represent the thermodynamic paths of the scalar Potts (J1 = J2) ,  vector 
Potts (J2 = 0) and Villain model respectively. P is the critical point of the five-state Potts 
model and El ,  E2 are bifurcation points of the self-dual line at which the soft phases 
originate. In phase 1: (S) # 0, ( p )  = 0,  m # 0; in phase 2: Z ( 5 )  inv., (S) = 0, ( p )  # 0 ,  m # 0; in 
phase 3: (S") = 0, ( p " )  = 0, m = 0. 

Figure 4. Schematic diagram of the Z(6) model. The straight line A M  is self-dual. The 
straight and curved lines going from (0, 0, 0) to (1, 1, 1) are the thermodynamic paths of the 
six-state Potts and Villain models respectively. The critical points are: P six-state Potts; ZI, 
Z2 king; Jl, J2 three-state Potts. At E the soft phase originates. In phases 1: (S' )  # 0, 
( p 2 )  = 0; in phase 2: ( S 3 )  # 0,  ( p 3 )  = 0; in phase 3: (S')  = (S3) = ( p 2 )  = ( p 3 )  = 0, m = 0. 
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(3) For N = 5 we have spontaneous breaking of the Z(5) symmetry when crossing 
the straight line, and two soft regions due to the symmetry Z ( K 1 ,  K 2 )  = Z ( K 2 ,  K1)  of 
the partition function, as shown in figure 3. 

(4) For N = 6  our phase diagram is the one of Domany and Riedel (1979), 
completed by including a soft phase in the region containing the high-temperature fixed 
point, as shown in figure 4. 

( 5 )  For N = 7 we have again spontaneous breaking of Z ( 7 )  at the three straight lines 
and three soft regions as shown in figure 5. The threefoldness is a consequence of the 
cyclic symmetry of the partition function in KI, KZ, . . , KN valid for any N, where N is 
a prime number. 

For ease of presentation we have restricted ourselves to the communication of the 
above results and defer details to a forthcoming publication, where we will inter alia 
apply the present method straightforwardly to Z ( N )  gauge systems. 

Figure 5. Schematic diagram of Z(7)  model. The straight lines A I M , ,  A2M2,  A3M3 are 
self-dual. The straight and curved lines going from ( O , O ,  0) to (1, 1, 1) are the ther- 
modynamic paths of the seven-state Potts and Villain models respectively. P is the 
seven-state Potts critical point and El, EZ, E3 are soft phase bifurcation points. 

It is a great pleasure to thank J A Swieca for numerous helpful and stimulating 
discussions throughout the course of this work. 
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